A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples
نویسندگان
چکیده
Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by using random cross-view correlations betweenwithin-class examples. Because of the randomproperty, we can construct a lot of feature extractors based on CCA and random correlation. So furthermore, we fuse those feature extractors and propose a novel method called random correlation ensemble (RCE) for multi-view ensemble learning. We compare RCE with existing multi-view feature extraction methods including CCA and discriminant CCA (DCCA) which use all cross-view correlations between within-class examples, as well as the trivial ensembles of CCA and DCCA which adopt standard bagging and boosting strategies for ensemble learning. Experimental results on several multi-view data sets validate the effectiveness of the proposed method. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification
In this paper, we present the supervised multi-view canonical correlation analysis ensemble (SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed to address heterogeneous domain adaptation problems, i.e., situations in which the data to be processed and recognized are collected from different heterogeneous domains. Specifically, the multi-view canonical corre...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملCanonical sparse cross-view correlation analysis
Recently, multi-view feature extraction has attracted great interest and Canonical Correlation Analysis (CCA) is a powerful technique for finding the linear correlation between two view variable sets. However, CCA does not consider the structure and cross view information in feature extraction, which is very important for subsequence tasks. In this paper, a new approach called Canonical Sparse ...
متن کاملTransfer Discriminant-Analysis of Canonical Correlations for View-Transfer Action Recognition
A novel transfer learning approach, referred to as Transfer Discriminant-Analysis of Canonical Correlations (Transfer DCC), is proposed to recognize human actions from one view (target view) via the discriminative model learned from another view (source view). To cope with the considerable change between feature distributions of source view and target view, Transfer DCC includes an effective no...
متن کاملMulti-View Forest: A New Ensemble Method based on Dempster-Shafer Evidence Theory
This paper proposes a new ensemble method that constructs an ensemble of tree-structured classifiers using multi-view learning. We are motivated by the fact that an ensemble can outperform its members providing that these classifiers are diverse and accurate. In order to construct diverse individual classifiers, we assume that the object to be classified is described by multiple feature sets (v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011